An artistic depiction of AI learning and how to train generative AI models through interaction and adaptation

Introduction

Generative AI is revolutionizing the way we interact with technology, enabling the creation of intelligent assistants capable of understanding and generating human-like text. In this guide, we will walk you through building a Generative AI assistant using Python, Groq, and Meta’s LLaMA 3 model. By the end of this tutorial, you’ll have a functional AI assistant capable of answering questions, generating text, and more.

Prerequisites

Before we begin, ensure you have the following:

  • Python 3.8+ installed
  • Access to Groq API
  • LLaMA 3 model setup (either locally or through an API)
  • Basic understanding of Python and machine learning
  • Required Python libraries: groq, transformers, torch, flask (for building an API)

Step 1: Setting Up the Environment

First, install the necessary dependencies by running:

pip install groq transformers torch flask

Step 2: Accessing LLaMA 3 via Groq API

If you’re using Groq’s API to access LLaMA 3, you need an API key. Once you have it, you can initialize the connection in Python:

import groq 
API_KEY = "your_groq_api_key"
groq_client = groq.Client(api_key=API_KEY)

Step 3: Loading the LLaMA 3 Model Locally

Alternatively, if you want to run LLaMA 3 locally, you can use the transformers library:

from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

model_name = "meta-llama-3"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")

Step 4: Creating the AI Assistant Function

Now, we create a function to generate responses using the LLaMA 3 model:

def generate_response(prompt):
    inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
    output = model.generate(**inputs, max_length=512)
    response = tokenizer.decode(output[0], skip_special_tokens=True)
    return response

If using Groq’s API:

def generate_response_groq(prompt):
    response = groq_client.chat.completions.create(
        model="llama-3",
        messages=[{"role": "system", "content": "You are a helpful AI assistant."},
                  {"role": "user", "content": prompt}]
    )
    return response.choices[0].message["content"]

Step 5: Building an API Endpoint with Flask

To make our assistant accessible via an API, we use Flask:

from flask import Flask, request, jsonify

app = Flask(__name__)

@app.route("/chat", methods=["POST"])
def chat():
    data = request.json
    user_input = data.get("message", "")
    response = generate_response(user_input)
    return jsonify({"response": response})

if __name__ == "__main__":
    app.run(host="0.0.0.0", port=5000)

Step 6: Testing the AI Assistant

Run the Flask app:

python app.py

Send a request using curl or Postman:

curl -X POST "http://localhost:5000/chat" -H "Content-Type: application/json" -d '{"message": "Hello, how are you?"}'

Conclusion

Congratulations! You have successfully built a Generative AI assistant using Python, Groq, and LLaMA 3. You can expand its functionality by fine-tuning the model, integrating it into a chatbot interface, or deploying it to the cloud for scalability.

Leave A Comment

All fields marked with an asterisk (*) are required